摘要

Collegiate cross country runners are at risk for running related injuries (RRI) due to high training volume and the potential for aberrant lower extremity biomechanics. However, there is a need for prospective research to determine biomechanical risk factors for RRI. The purpose of this study was to prospectively compare ankle, knee, and hip kinematics and kinetics and ground reaction force characteristics between injured and non-injured cross country runners over a 14-week season. Biomechanical running analyses were conducted on 31 collegiate-cross country runners using a 3-dimensional motion capture system and force plate prior to the start of the season. Twelve runners were injured and 19 remained healthy during the course of the season. Peak external knee adduction moment (KAM), a surrogate for frontal plane knee loading, and peak ankle eversion velocity were greater in runners who sustained an injury compared to those who did not, and no differences were noted in ground reaction force characteristics, or hip kinematics and kinetics. Reducing the KAM and ankle eversion velocity may be an important aspect of preventing RRI.

  • 出版日期2017-4