摘要

Powering future generations of medical and health care devices mandates the transcutaneous transfer of energy or harvesting energy from the human body fluid. Glucose-driven bio fuel cells (bio-batteries) demonstrate promise as they produce electrical energy from glucose, which is a substrate presents in physiological fluids. Enzymatic biofuel cells can convert chemical energy into electrical energy using enzymes as catalysts. In this study, an air bio-battery was developed for healthcare and medical applications, consisting of a glucose-driven enzymatic biofuel cell using a direct gas-permeable membrane or a gas/liquid porous diaphragm. The power generation characteristics included a maximum current density of 285 mu A/cm(2) and maximum power density of 70.7 mu W/cm(2) in the presence of 5 mmol/L of glucose in solution. In addition, high-performance, long-term stabilized power generation was achieved using the gas/liquid porous diaphragm for the reactions between oxygen and enzyme. This system can be powered using 5 mmol/L of glucose, the value of which is similar to that of the blood sugar range in humans.

  • 出版日期2018-4-30