摘要

In this paper, we consider the problem of the nominal 2-D (azimuth and elevation) direction-of-arrival (DOA) estimation for coherently distributed source. This new approach is based on the rotation matrices of three parallel uniform linear arrays as deduced, which has decoupled the nominal 2-D DOA from those of angular spreads. The estimator makes use of the eigenvalue decomposition to beamspace data to estimate the nominal elevation DOA. And then using a new cross-correlation matrix, the nominal azimuth DOA estimates are decoupled from the elevation estimates and can be obtained with no searching. The proposed algorithm has lower computational complexity particularly when the radio of array size to the number of source is large, at the expense of negligible performance loss. Simulation results verify the effectiveness of the proposed method.