摘要

Zeolite, hematite, modified zeolite and commercial activated charcoal were examined for their ability to remove methylene blue (MB) and methyl red (MR) from their aqueous solutions. Modified zeolite and hematite were produced according to the Schwertmann and Cornell method while zeolite and commercial activated charcoal were obtained from S%26B and Fluka AG companies, respectively. Adsorption experiments were conducted at three different adsorbent-to-solution ratios, namely 8, 16 and 24 g/L under environmental conditions and continuous stirring. Equilibrium isotherms of MB and MR were studied at different initial concentrations (from 5 x 10(-4) to 5 x 10(-3) g/L). MB adsorption kinetics were also studied. The maximum adsorption of MB and MR from their aqueous solutions was achieved at 24 g/L (adsorbent-to-dye solution ratio) after 1 h and was equal to 100% (MB) on modified zeolite and 99% (MR) on commercial activated charcoal, respectively. All the other materials achieved intermediate values of dye adsorption. From the applied kinetic models, the pseudo-second-order equation best described the adsorption of MB and MR. Consequently, modified zeolite showed the highest adsorption capacity for MB, while commercial activated charcoal showed the highest adsorption capacity of MR. The studied adsorbents can be used as filters to remove dyes from wastewaters.

  • 出版日期2013