摘要

Recently conducted clinical trials have provided impressive evidence that chemotherapy resistant metastatic melanoma and several hematological malignancies can be cured using adoptive T cell therapy or T cell-recruiting bispecific antibodies. However, a significant fraction of patients did not benefit from these treatments. Here we have evaluated the feasibility of a novel combination therapy which aims to further enhance the killing potential of bispecific antibody-redirected T lymphocytes by using these cells as targeted delivery system for photosensitizing agents. For a first in vitro proof-of-concept study, ex vivo activated human donor T cells were loaded with a poly(styrene sulfonate) (PSS)-complex of the model photosensitizer 5,10,15,20-tetrakis(3-hydroxyphenyl) porphyrin (mTHPP). In the absence of light and when loading with the water-soluble PSS/mTHPP-complex occurred at a tolerable concentration, viability and cytotoxic function of loaded T lymphocytes were not impaired. When "drug-enhanced" T cells were co-cultivated with EpCAM-expressing human carcinoma cells, mTHPP was transferred to target cells. Notably, in the presence of a bispecific antibody, which cross-links effector and target cells thereby inducing the cytolytic activity of cytotoxic T lymphocytes, significantly more photosensitizer was transferred. Consequently, upon irradiation of co-cultures, redirected drug-loaded T cells were more effective in killing A549 lung and SKOV-3 ovarian carcinoma cells than retargeted unloaded T lymphocytes. Particularly, the additive approach using redirected unloaded T cells in combination with appropriate amounts of separately applied PSS/mTHPP was less efficient as well. Thus, by loading T lymphocytes with a stimulus-sensitive anti-cancer drug, we were able to enhance the cytotoxic capacity of carrier cells. Photosensitizer boosted T cells could open new perspectives for adoptive T cell therapy as well as targeted photodynamic therapy.

  • 出版日期2015-1-10