Abrasive waterjet machining simulation by SPH method

作者:Wang Jianming*; Gao Na; Gong Wenjun
来源:International Journal of Advanced Manufacturing Technology, 2010, 50(1-4): 227-234.
DOI:10.1007/s00170-010-2521-x

摘要

Abrasive waterjet machining (AWJM) is a non-conventional process. The mechanism of material removing in AWJM for ductile materials and existing erosion models are reviewed in this paper. To overcome the difficulties of fluid-solid interaction and extra-large deformation problem using finite element method (FEM), the SPH-coupled FEM modeling for abrasive waterjet machining simulation is presented, in which the abrasive waterjet is modeled by SPH particles and the target material is modeled by FE. The two parts interact through contact algorithm. The creativity of this model is multi-materials SPH particles, which contain abrasive and water and mix together uniformly. To build the model, a randomized algorithm is proposed. The material model for the abrasive is first presented. Utilizing this model, abrasive waterjet penetrating the target materials with high velocity is simulated and the mechanism of erosion is depicted. The relationship between the depth of penetration and jet parameters, including water pressure and traverse speed, etc., are analyzed based on the simulation. The results agree with the experimental data well. It will be a benefit to understand the abrasive waterjet cutting mechanism and optimize the operating parameters.