Numerical research of a super-large cooling tower subjected to accidental loads

作者:Li, Yi; Lin, Feng; Gu, Xianglin*; Lu, Xiaoqin
来源:Nuclear Engineering and Design, 2014, 269: 184-192.
DOI:10.1016/j.nucengdes.2013.08.028

摘要

With the continued development of nuclear power plants, more and more super-large cooling towers are to be built in China and around the world. For the safe operation of nuclear power plants, research work has been done on the causes of collapse of cooling towers, collapse modes and the secondary disasters caused by the collapse of cooling towers. However, the collapse modes and the ground vibration induced by the collapse of cooling towers subjected to the accidental loads have not been fully understood. This paper has been focused on the modes and mechanisms behavior of the collapse of cooling towers subjected to accidental loads. Meanwhile, prediction of the ground vibration due to the collapse of the cooling towers has also been completed in a parallel project. Using dynamic finite element program LS-DYNA, a 3D finite element model for a super-large cooling tower was developed and the nonlinear material models were incorporated. In this paper, four types of accidental loads were considered to trigger the collapse or local failure of the tower, including vehicle collision, airplane impact, local explosion and missile attack. It was found that vehicle collision, missile attack and small TNT equivalent explosives (2 kg, 20 kg, 200 kg) might result in local failure of the cooling tower, however, the tower can still keep stable. On the other hand, large TNT equivalent explosives (2000 kg, 4500 kg) could cause severe damages in the inclined columns of the cooling tower, and lead to progressive collapse of the entire cooling tower. The two kinds of TNT equivalent explosives caused the same collapse mode while the collapsing duration was different. The airplane impacted at the throat of the cooling tower caused the local failure of shell structure of the tower, and then the progressive collapse of the cooling tower happened due to the gravitational action. The resulting collapse mode was different from that triggered by the local explosion.