摘要

The results of the isoglycemic intravenous glucose infusion (IIGI) study need to mimic the dynamic glucose profiles during the oral glucose tolerance test (OGTT) to accurately calculate the incretin effect. The glucose infusion rates during IIGI studies have historically been determined by experienced research personnel using the manual ad-hoc method. In this study, a computational method was developed to automatically determine the infusion rates for IIGI study based on a glucose-dynamics model. To evaluate the computational method, 18 subjects with normal glucose tolerance underwent a 75 g OGTT. One-week later, Group 1 (n = 9) and Group 2 (n = 9) underwent IIGI studies using the ad-hoc method and the computational method, respectively. Both methods were evaluated using correlation coefficient, mean absolute relative difference (MARD), and root mean square error (RMSE) between the glucose profiles from the OGTT and the IIGI study. The computational method exhibited significantly higher correlation (0.95 +/- 0.03 versus 0.86 +/- 0.10, P = 0.019), lower MARD (8.72 +/- 1.83% versus 13.11 +/- 3.66%, P = 0.002), and lower RMSE (10.33 +/- 1.99 mg/dL versus 16.84 +/- 4.43 mg/dL, P = 0.002) than the ad-hoc method. The computational method can facilitate IIGI study, and enhance its accuracy and stability. Using this computational method, a high-quality IIGI study can be accomplished without the need for experienced personnel.