摘要

Based on the numerical solutions of the time-dependent Schrodinger equation within the single-active-electron approximation, we propose a method for observing instantaneous atomic level shifts in an oscillating strong infrared (IR) field with sub-IR-cycle time resolution, by using a single tunable attosecond (SA) pulse to probe excited states of the perturbed atom. The ionization probability in the combined fields depends on both the frequency of the attosecond pulse and the time delay between both pulses, since the IR field periodically shifts SA-pulse-excited energy levels into and out of resonance.