摘要

In this essay, we propose that embryos express a metabolic phenotype necessarily different from that of differentiated somatic cells and more like that of rapidly proliferating cancer cells. This metabolic adaptation, known as the Warburg effect, supports rapid cell proliferation. One of the hallmarks of the Warburg effect is that pyruvate is directed away from the tri-carboxylic acid cycle and metabolized to lactate, resulting in a buildup of glycolytic intermediates. Although this is a comparatively inefficient way to generate ATP, this adaptation allows the cell to meet other critical metabolic requirements, including biomass production and redox regulation. Thus, utilization of WE gives proliferating cells a selective growth advantage. This model represents a completely new understanding of embryo metabolism in the context of a broad, interconnected network of metabolic mechanisms that influence viability, versus the current dogma of carbohydrate metabolism via oxidative phosphorylation. A more complete understanding of embryo metabolism is critical to better support embryo viability in vitro, and to avoid forcing embryos to adapt to suboptimal culture conditions at a significant cost to future growth and development. Mol. Reprod. Dev. 79: 311320, 2012.

  • 出版日期2012-5