摘要

It is desirable to convert biomass-derived furfural to 2-methylfuran through the hydrodeoxygenation (HDO) reaction using an inexpensive catalyst with high stability. In this work, Mo2C was used as an alternative substrate to replace precious Pt to support monolayer Fe for the HDO reaction of furfural. The HDO activity and stability of Fe/Pt(111) and Fe/Mo2C/Mo(110) surfaces were compared. Density functional theory calculations and vibrational spectroscopy results indicated that both surfaces bonded to furfural with similar adsorption geometries and should be active toward the furfural HDO reaction. Temperature programmed desorption experiments confirmed a similar HDO activity between the two surfaces, with Fe/Mo2C/Mo(110) being more thermally stable than Fe/Pt(111). The combined theoretical and experimental results demonstrated that Fe/Mo2C should be a promising non-precious metal catalyst for the HDO reaction of furfural to produce 2-methylfuran.