摘要

Several criteria for mixed-mode fracture in crack problems are based on the maximum of a quantity quite frequently related to stress components. This quantity should not reach a critical value. Computationally, this approach requires the use of the first and the second derivatives of the above quantity although frequently the use of the second derivative is omitted because of the necessary complicated computations. Therefore, mathematically, the determination of the maximum of the quantity of interest is not assured when the classical approach is used without the second derivative. Here a completely different and more rigorous approach is proposed. The present approach is based on symbolic computations and makes use of modern quantifier elimination algorithms implemented in the computer algebra system Mathematica. The maximum tangential stress criterion, the generalized maximum tangential stress criterion (with a T-stress term), the T-criterion and the modified maximum energy release rate criterion are used for the illustration of the present new approach in the mode I/II case. Beyond the conditions of fracture initiation, the determination of the fracture angle is also studied. The mode I/III case is also considered in brief. The present approach completely avoids differentiations, similarly the necessity of a distinction between maxima and minima, always leads to a global (absolute) and not to a local (relative) maximum and frequently to closed-form formulae and automatically makes a distinction of cases in the final formula whenever this is necessary. Moreover, its use is easy and direct and the maximum of the quantity of interest is always assured.

  • 出版日期2017-10