Detailed Modeling and Evaluation of a Scalable Multilevel Checkpointing System

作者:Mohror Kathryn*; Moody Adam; Bronevetsky Greg; de Supinski Bronis R
来源:IEEE Transactions on Parallel and Distributed Systems, 2014, 25(9): 2255-2263.
DOI:10.1109/TPDS.2013.100

摘要

High-performance computing (HPC) systems are growing more powerful by utilizing more components. As the system mean time before failure correspondingly drops, applications must checkpoint frequently to make progress. However, at scale, the cost of checkpointing becomes prohibitive. A solution to this problem is multilevel checkpointing, which employs multiple types of checkpoints in a single run. Lightweight checkpoints can handle the most common failure modes, while more expensive checkpoints can handle severe failures. We designed a multilevel checkpointing library, the Scalable Checkpoint/Restart (SCR) library, that writes lightweight checkpoints to node-local storage in addition to the parallel file system. We present probabilistic Markov models of SCR's performance. We show that on future large-scale systems, SCR can lead to a gain in machine efficiency of up to 35 percent, and reduce the load on the parallel file system by a factor of two. Additionally, we predict that checkpoint scavenging, or only writing checkpoints to the parallel file system on application termination, can reduce the load on the parallel file system by 20x on today's systems and still maintain high application efficiency.

  • 出版日期2014-9

全文