MicroRNAs induced in melanoma treated with combination targeted therapy of Temsirolimus and Bevacizumab

作者:Wagenseller Aubrey G; Shada Amber; D'Auria Kevin M; Murphy Cheryl; Sun Dandan; Molhoek Kerrington R; Papin Jason A; Dutta Anindya; Slingluff Craig L Jr*
来源:Journal of Translational Medicine, 2013, 11(1): 218.
DOI:10.1186/1479-5876-11-218

摘要

Background: Targeted therapies directed at commonly overexpressed pathways in melanoma have clinical activity in numerous trials. Little is known about how these therapies influence microRNA (miRNA) expression, particularly with combination regimens. Knowledge of miRNAs altered with treatment may contribute to understanding mechanisms of therapeutic effects, as well as mechanisms of tumor escape from therapy. We analyzed miRNA expression in metastatic melanoma tissue samples treated with a novel combination regimen of Temsirolimus and Bevacizumab. Given the preliminary clinical activity observed with this combination regimen, we hypothesized that we would see significant changes in miRNA expression with combination treatment. Methods: Using microarray analysis we analyzed miRNA expression levels in melanoma samples from a Cancer Therapy Evaluation Program-sponsored phase II trial of combination Temsirolimus and Bevacizumab in advanced melanoma, which elicited clinical benefit in a subset of patients. Pre-treatment and post-treatment miRNA levels were compared using paired t-tests between sample groups (patients), using a p-value < 0.01 for significance. Results: microRNA expression remained unchanged with Temsirolimus alone; however, expression of 15 microRNAs was significantly upregulated (1.4 to 2.5-fold) with combination treatment, compared to pre-treatment levels. Interestingly, twelve of these fifteen miRNAs possess tumor suppressor capabilities. We identified 15 putative oncogenes as potential targets of the 12 tumor suppressor miRNAs, based on published experimental evidence. For 15 of 25 miRNA-target mRNA pairings, changes in gene expression from pre-treatment to post-combination treatment samples were inversely correlated with changes in miRNA expression, supporting a functional effect of those miRNA changes. Clustering analyses based on selected miRNAs suggest preliminary signatures characteristic of clinical response to combination treatment and of tumor BRAF mutational status. Conclusions: To our knowledge, this is the first study analyzing miRNA expression in pre-treatment and post-treatment human metastatic melanoma tissue samples. This preliminary investigation suggests miRNAs that may be involved in the mechanism of action of combination Temsirolimus and Bevacizumab in metastatic melanoma, possibly through inhibition of oncogenic pathways, and provides the preliminary basis for further functional studies of these miRNAs.

  • 出版日期2013-9-18