DmCatD, a cathepsin D-like peptidase of the hematophagous insect Dipetalogaster maxima (Hemiptera: Reduviidae): Purification, bioinformatic analyses and the significance of its interaction with lipophorin in the internalization by developing oocytes

作者:Leyria Jimena; Fruttero Leonardo L; Ligabue Braun Rodrigo; Defferrari Marina S; Arrese Estela L; Soulages Jose L; Settembrini Beatriz P; Carlini Celia R; Canavoso Lilian E*
来源:Journal of Insect Physiology, 2018, 105: 28-39.
DOI:10.1016/j.jinsphys.2018.01.002

摘要

DmCatD, a cathepsin D-like peptidase of the hematophagous insect Dipetalogaster maxima, is synthesized by the fat body and the ovary and functions as yolk protein precursor. Functionally, DmCatD is involved in vitellin proteolysis. In this work, we purified and sequenced DmCatD, performed bioinformatic analyses and investigated the events involved in its targeting and storage in developing oocytes. By ion exchange and gel filtration chromatography, DmCatD was purified from egg homogenates and its identity was confirmed by mass spectrometry. Approximately 73% of the full-length transcript was sequenced. The phylogeny indicated that DmCatD has features which suggest its distancing from "classical" cathepsins D. Bioinformatic analyses using a chimeric construct were employed to predict post-translational modifications. Structural modeling showed that DmCatD exhibited the expected folding for this type of enzyme, and an active site with conserved architecture. The interaction between DmCatD and lipophorin in the hemolymph was demonstrated by co-immunoprecipitation. Colocalization of both proteins in developing oocyte membranes and yolk bodies was detected by immunofluorescence. Docking assays favoring the interaction DmCatD-lipophorin were carried out after modeling lipophorin of a related triatomine species. Our results suggest that lipophorin acts as a carrier for DmCatD to facilitate its further internalization by the oocytes. The mechanisms involved in the uptake of peptidases within the oocytes of insects have not been reported. This is the first experimental work supporting the interaction between cathepsin D and lipophorin in an insect species, enabling us to propose a pathway for its targeting and storage in developing oocytes.

  • 出版日期2018-3