Attenuation Correction and Hydrometeor Classification of High-Resolution, X-band, Dual-Polarized Mobile Radar Measurements in Severe Convective Storms

作者:Snyder Jeffrey C*; Bluestein Howard B; Zhang Guifu; Frasier Stephen J
来源:Journal of Atmospheric and Oceanic Technology, 2010, 27(12): 1979-2001.
DOI:10.1175/2010JTECHA1356.1

摘要

X-band and shorter radar wavelengths are preferable for mobile radar systems because a narrow beam can be realized with a moderately sized antenna. However, attenuation by precipitation becomes progressively more severe with decreasing radar wavelength. As a result, X band has become a popular choice for meteorological radar systems that balances these two considerations. Dual-polarization provides several methods by which this attenuation (and differential attenuation) can be detected and corrected, mitigating one of the primary disadvantages of X-band radars.
The dynamics of severe convective storms depend, to some extent, on the distribution and type of hydrometeors within the storm. To estimate the three-dimensional distribution of hydrometeors using X-band radar data, it is necessary to correct for attenuation before applying commonly used hydrometeor classification algorithms. Since 2002, a mobile dual-polarized Doppler weather radar designed at the University of Massachusetts, Amherst has been used to collect high-resolution data in severe convective storms in the plains. This study tests several attenuation correction procedures using dual-polarization measurements, along with a dual-frequency method using S-band Weather Surveillance Radar-1988 Doppler (WSR-88D) and KOUN data. After correcting for attenuation and differential attenuation, a fuzzy logic hydrometeor classification algorithm, modified for X band with KOUN data as a reference, is used to attempt a retrieval of hydrometeor types in observed severe convective storms.

  • 出版日期2010-12