摘要

One million Americans suffer from chronic wounds every year with diabetics and older populations representing the majority. Mechanisms that may be responsible for the reduced healing response in these patients include reduction in growth factors or vascularization and an increase in free radical levels. The focus of this study was to develop a biocompatible gold/porcine diaphragm scaffold capable of sustaining fibroblast attachment and proliferation which was measured using viability and dsDNA assays. The free radical scavenging properties, as measured by ROS assays, were also investigated as a mechanism for improving the wound environment. Results indicated 69-89% viability for gold nanoparticle (AuNP) scaffolds and 51-74% for gold nanorod (AuNR) scaffolds as compared to 100% for decellularized scaffolds and 77% for crosslinked scaffolds. All scaffolds exhibited good cell attachment while AuNP-1X scaffolds showed the greatest cell proliferation with a 74% increase in dsDNA content from Day 3 to 7. AuNP-2X and AuNP-4X scaffolds generated higher levels of free radicals with AuNP-4X generating over twice as much as decellularized scaffolds. This study suggests the capability for gold/porcine diaphragm scaffolds to enhance cell proliferation while the modification of free radical generation appears to be dependent on nanomaterial shape and concentration.

  • 出版日期2011-12