摘要

The impulsive wave is considered as one of the most notably secondary hazards induced by landslides in reservoir areas. The impulsive wave with considerable wave amplitude is able to cause serious damage to the dam body, shoreline properties and lives. To investigate and predict the wave characteristics, many experimental studies employed the generalized channels rather than the realistic topography. Deviation from the idealized geometries may result in non-negligible effects due to the wave refraction or reflection with complex topography. To consider the topography effect, a prototype scaled experiment was conducted. A series of tests with different collocation of parameters were performed. The experimental results were then summarized to propose empirical equations to predict the maximum wave amplitude, and wave decay in channel direction. The generalized empirical equations can obtain better results for wave features prediction by compared with those derived from the idealized models. Furthermore, a 3D numerical modeling corresponding to the physical experiment was conducted based on the SPH method. The wave characteristics in the sliding and channel directions were investigated in detail including the maximum wave amplitude, wave run-up, wave arrival time and wave crest amplitude decay. The comparison between the simulation and experiment indicates the promising accuracy of the SPH simulation in determining the general features even with complex river topography. Finally, the limitation and applicability of both the experimental and numerical methods in analyzing the practical engineering problems were discussed. Combination of the both methods can benefit the hazard prevention and reduction for landslide generated impulsive waves in reservoir area.