摘要

We consider divergence form elliptic operators of the form L = -div A (x)del, defined in Rn+1 = {(x, t) is an element of R-n x R}, n >= 2, where the L-infinity coefficient matrix A is (n + 1) x (n + 1), uniformly elliptic, complex and t-independent. We show that for such operators, boundedness and invertibility of the corresponding layer potential operators on L-2 (R-n) = L-2(partial derivative R-+(n+1)) is stable under complex, L-infinity perturbations of the coefficient matrix. Using a variant of the Tb Theorem, we also prove that the layer potentials are bounded and invertible on L-2(R-n) whenever A (x) is real and symmetric (and thus, by our stability result, also when A is complex, parallel to A - A(0)parallel to(infinity) is small enough and A(0) is real, symmetric, L-infinity and elliptic). In particular, we establish solvability of the Dirichlet and Neumann (and Regularity) problems, with L-2 (resp. (L) over dot(1)(2)) data, for small complex perturbations of a real symmetric matrix. Previously, L-2 solvability results for complex (or even real but non-symmetric) coefficients were known to hold only for perturbations of constant matrices (and then only for the Dirichlet problem), or in the special case that the coefficients A (j,n+1)= 0 = A(n+1,j), 1 <= j <= n, which corresponds to the Kato square root problem.

  • 出版日期2011-3-20