Scattering of a Gaussian beam from a row of cylinders with rectangular cross section

作者:Daniel Valenzuela Sau Jesus; Munguia Arvayo Ramon; Gastelum Acuna Sandra; Gaspar Armenta Jorge; Napoles Duarte Jose; Garcia Llamas Raul*
来源:Journal of the Optical Society of America A-Optics Image Science and Vision, 2017, 34(8): 1369-1375.
DOI:10.1364/JOSAA.34.001369

摘要

The transverse magnetic Gaussian beam diffraction from a finite number, equally spaced and rectangular cross section dielectric cylinder row is studied. The infinitely long cylinders' axes are perpendicular to the beam's direction of propagation. The cylinder row, with dielectric constant epsilon(c) = n(c)(2), is treated as a periodic inhomogeneous film, with period a(x) and thickness w(y), bounded by two semi-infinite homogeneous media. With this restriction, the method is valid only for square or rectangular cross section cylinders. The supercell and the plane wave expansion methods are used to calculate the eigenfrequencies and eigenvectors supported for a one-dimensional photonic crystal. Then, these eigenfrequencies and eigenvectors are used to expand the field in the inhomogeneous film. Numerical results are presented for ax greater than. (the incident light wavelength), w(x) (the cylinder width), and w(g) (Gaussian beam waist). Two cases are studied. In the first (second) case, the unit cell contains one cylinder (a cylinder row), which simulates the scattering from a single cylinder (an inhomogeneous thin film). The total integrated scattering in transmission (reflection) shows three well-defined minima (maxima), which are due to interference effects. Its positions can be approximately obtained with the formula.

  • 出版日期2017-8-1