Ultrasonic-assisted Kabachnik-Fields reaction for rapid fabrication of AIE-active fluorescent organic nanoparticles

作者:Long, Zi; Liu, Meiying; Jiang, Ruming; Zeng, Guangjiang; Wan, Qing; Huang, Hongye; Deng, Fengjie; Wan, Yiqun; Zhang, Xiaoyong*; Wei, Yen*
来源:Ultrasonics Sonochemistry, 2017, 35: 319-325.
DOI:10.1016/j.ultsonch.2016.10.008

摘要

Aggregation-induced emission (AIE)-active fluorescent organic nanoparticles (FNPs) have been extensively explored for fluorescence "turn-on" bio-imaging applications with the unique advantages over conventional FNPs. Transformation of AIE-active molecules into FNPs can greatly expand their biomedical application potential. Here we reported a novel "one-pot" strategy for fabricating AIE-active FNPs through an ultrasonic-assisted, catalysts-free and solvent-free Kabachnik-Fields (KF) reaction for the first time. The KF reaction can be completed within 10 min to generate AIE-active PTH-CHO-PEI-DEP FNPs through mixing polyethylenimine and aldehyde group containing AIE dyes and diethyl phosphate. These PTH-CHO-PEI-DEP FNPs were confirmed by proton nuclear magnetic resonance (H-1 NMR) spectroscopy, transmission electron microscopy (TEM) and fluorescence spectroscopy etc. The cell uptake behavior as well as cell viability of PTH-CHO-PEI-DEP FNPs was examined to evaluate their potential for biomedical application. We demonstrated that the amphiphilic alpha-aminophosphonate polymers could self-assemble into PTH-CHO-PEI-DEP FNPs in aqueous solution and showed excellent water dispersibility. TEM image shows the size of PTH-CHO-PEI-DEP FNPs is 100-200 nm. More importantly, the PTH-CHO-PEI-DEP FNPs emit strong green fluorescence and desirable biocompatibility, making them very suitable for biomedical applications. Finally, thus smart FNPs design together with their excellent performance will open a new avenue in the development of FNPs for following biological processes such as carcinogenesis.