Detection of movement intention from single-trial movement-related cortical potentials

作者:Niazi Imran Khan; Jiang Ning; Tiberghien Olivier; Nielsen Jorgen Feldbaek; Dremstrup Kim; Farina Dario*
来源:Journal of Neural Engineering, 2011, 8(6): 066009.
DOI:10.1088/1741-2560/8/6/066009

摘要

Detection of movement intention from neural signals combined with assistive technologies may be used for effective neurofeedback in rehabilitation. In order to promote plasticity, a causal relation between intended actions (detected for example from the EEG) and the corresponding feedback should be established. This requires reliable detection of motor intentions. In this study, we propose a method to detect movements from EEG with limited latency. In a self-paced asynchronous BCI paradigm, the initial negative phase of the movement-related cortical potentials (MRCPs), extracted from multi-channel scalp EEG was used to detect motor execution/imagination in healthy subjects and stroke patients. For MRCP detection, it was demonstrated that a new optimized spatial filtering technique led to better accuracy than a large Laplacian spatial filter and common spatial pattern. With the optimized spatial filter, the true positive rate (TPR) for detection of movement execution in healthy subjects (n = 15) was 82.5 +/- 7.8%, with latency of -66.6 +/- 121 ms. Although TPR decreased with motor imagination in healthy subject (n = 10, 64.5 +/- 5.33%) and with attempted movements in stroke patients (n = 5, 55.01 +/- 12.01%), the results are promising for the application of this approach to provide patient-driven real-time neurofeedback.

  • 出版日期2011-12