Anti-tumor effect of Scutellaria barbata D. Don extracts on ovarian cancer and its phytochemicals characterisation

作者:Zhang, Lin; Ren, Baoyin; Zhang, Jing; Liu, Likun; Liu, Jia; Jiang, Guoqiang; Li, Man; Ding, Yuejia; Li, Weiling*
来源:Journal of Ethnopharmacology, 2017, 206: 184-192.
DOI:10.1016/j.jep.2017.05.032

摘要

Ethnopharmacological relevance: Scutellaria barbata D. Don is a widely used medicinal herb in China. It possess various medicinal properties including antioxidative, anti-inflammatory and anti-cancer effects. The aim of this study was to explore whether Scutellaria barbata D. Don could inhibit the growth of ovarian cancer cells in vitro and further investigate the underlying mechanisms. Materials and methods: Effects of Scutellaria barbata D. Don on the viability of ovarian cancer A2780 cells were measured by MTT assay. Apoptosis was measured by cell morphologic observation through DAPI staining and Annexin V-FITC staining assay for apoptosis analysis. The migration of ovarian cancer cells which exposed to Scutellaria barbata D. Don were measured by wound healing and transwell chamber assays. The protein levels of caspase 3/9, Bcl-2 and MMP-2/9 in human ovarian cancer cells treated with Scutellaria barbata D. Don were assessed by western blotting analysis. The potential bioactive compounds were characterized by HPLC-Q-TOF-MS. Results: The present study was to investigate the anticancer effects of crude extracts from Scutellaria barbata D. Don on ovarian cancer A2780 cells by MTT, DAPI staining, wound healing assay, transwell migration assay and western blotting analysis. Our study showed that Scutellaria barbata D. Don reduced the viability of A2780 cells and induced apoptosis by down-regulated Bcl-2 protein and increased Caspase 3/9 proteins. Furthermore, migration of A2780 cells were significantly inhibited by Scutellaria barbata D. Don and the underlying mechanism may be related to the decrease of MMP-2/9. The main constituents from Scutellaria barbata D. Don were identified to be thirteen flavonoids. A HPLC-Q-TOF-MS analysis of Scutellaria barbata D. Don indicated the presence of 14 flavonoids compounds, which may contribute to the anticancer activity of the Scutellaria barbata D. Don. Conclusions: Scutellaria barbata D. Don could inhibit proliferation and induce apoptosis in A2780 cells through mitochondrial pathway. Moreover, the inhibitory effect of Scutellaria barbata D. Don on the migration of ovarian cancer cells was associated with the down-regulation of MMP-2/9 expression. These findings could shed a light on the therapy of ovarian cancer.