A MnO2/Graphene Oxide/Multi-Walled Carbon Nanotubes-Sulfur Composite with Dual-Efficient Polysulfide Adsorption for Improving Lithium-Sulfur Batteries

作者:Li, Yong; Ye, Daixin; Liu, Wen; Shi, Bin; Guo, Rui; Zhao, Hongbin; Pei, Haijuan; Xu, Jiaqiang*; Xie, Jingying*
来源:ACS Applied Materials & Interfaces, 2016, 8(42): 28566-28573.
DOI:10.1021/acsami.6b04270

摘要

Lithium-sulfur batteries can potentially be used as a chemical power source because of their high energy density. However, the sulfur cathode has several shortcomings, including fast capacity attenuation, poor electrochemical activity, and low Coulombic efficiency. Herein, multi-walled carbon nanotubes (CNTs), graphene oxide (GO), and manganese dioxide are introduced to the sulfur cathode. A MnO2/GO/CNTs-S composite with a unique three-dimensional (3D) architecture was synthesized by a one-pot chemical method and heat treatment approach. In this structure, the innermost CNTs work as a conducting additive and backbone to form a conducting network. The MnO2/GO nanosheets anchored on the sidewalls of CNTs have a dual-efficient absorption capability for polysulfide intermediates as well as afford adequate space for sulfur loading. The outmost nanosized sulfur particles are well-distributed on the surface of the MnO2/GO nanosheets and provide a short transmission path for Li+ and the electrons. The sulfur content in the MnO2/GO/CNTs-S composite is as high as 80 wt %, and the as-designed MnO2/GO/CNTs-S cathode displays excellent comprehensive performance. The initial specific capacities are up to 1500, 1300, 1150, 1048, and 960 mAh g(-1) at discharging rates of 0.05, 0.1, 0.2, 0.5, and 1 C, respectively. Moreover, the composite cathode shows a good cycle performance: the specific capacity remains at 963.5 mAh g(-1) at 0.2 C after 100 cycles when the area density of sulfur is 2.8 mg cm(-2).

  • 出版日期2016-10-26
  • 单位上海空间电源研究所; 上海大学