摘要

If the potential V describing the interaction between an excess electron and a ground-state neutral or anionic parent is sufficiently attractive at short range, electron-attached states having positive electron affinities (EAs) can arise. Even if the potential is not attractive enough to produce a bound state, metastable electron-attached states may still occur and have lifetimes long enough to give rise to experimentally detectable signatures. Low-energy metastable states arise when the attractive components of V combine with a longer-range repulsive contribution to produce a barrier behind which the excess electron can be temporarily trapped. These repulsive contributions arise from either the centrifugal potential in the excess electron's angular kinetic energy or long-range Coulomb repulsion in the case of an anionic parent. When there is no barrier, this kind of low-energy metastable state does not arise, but improper theoretical calculations can lead to erroneous predictions of their existence. Conventional electronic structure methods with, at most, minor modifications are described for properly characterizing metastable states and for avoiding incorrectly predicting the existence of metastable states with negative EAs where no barrier is present.

  • 出版日期2014-1-14