摘要

An improved approach is proposed to analyze the density of metastable states within any hysteresis loop, such as those observed in magnetic materials or for adsorption in porous materials. Except for a few analytically tractable models, most calculations have to be performed numerically on finite systems. The main points to be addressed thus concern the average over various material samples (the so-called realizations of the disorder), and the finite size analysis to estimate the thermodynamic limit. As an improvement of previously existing methods, it is proposed to introduce the Fourier transform of the density of metastable states (characteristic function). Its logarithm is shown to be additive and can straightforwardly be averaged over disorder. This procedure leads to a new definition of the complexity in finite size, giving the usual quenched complexity in the thermodynamic limit, while being better suited to performing finite size analysis. The calculations are illustrated on a molecular simulation based model for a simple fluid adsorbed in heterogeneous siliceous tubular pores mimicking mesoporous materials like MCM-41 or porous silicon. This approach is expected to be of general interest for hysteresis phenomena, including magnetic materials.

  • 出版日期2011-1-26