摘要

Argonaute (Ago) 2 is the catalytic engine of mammalian RNA interference, but little is known concerning the regulation of Ago2 by cell-signaling pathways. In this study we show that expression of Ago2, but not Ago1, Ago3, or Ago4, is elevated in estrogen receptor (ER) alpha-negative (ER alpha(-)) vs. ER alpha-positive (ER alpha( )) breast cancer cell lines, and in ER alpha(-) breast tumors. In MCF-7 cells the low level of Ago2 was found to be dependent upon active ER alpha/estrogen signaling. Interestingly, the high expression of Ago2 in ER alpha(-) cells was severely blunted by inhibition of the epidermal growth factor (EGF) receptor/MAPK signaling pathway, using either a pharmacological MAPK kinase inhibitor, U0126, or a small interfering RNA directed against EGF receptor. Half-life studies using cycloheximide indicated that EGF enhanced, whereas U0126 decreased, Ago2 protein stability. Furthermore, a proteosome inhibitor, MG132, blocked Ago2 protein turnover. The functional consequences of elevated Ago2 levels were examined by stable transfection of ER alpha( ) MCF-7 cells with full-length and truncated forms of Ago2. The full-length Ago2 transfectants displayed enhanced proliferation, reduced cell-cell adhesion, and increased migratory ability, as shown by proliferation, homotypic aggregation, and wound healing assays, respectively. Overexpression of full-length Ago2, but not truncated forms of Ago2 or an empty vector control, reduced the levels of E-cadherin, beta-catenin, and beta-actin, as well as enhanced endogenous miR-206 activity. These data indicate that Ago2 is regulated at both the transcriptional and posttranslational level, and also implicate Ago2 and enhanced micro-RNA activity in the tumorigenic progression of breast cancer cell lines. (Endocrinology 150: 14-23, 2009)

  • 出版日期2009-1