摘要

Parthenogenetic strains of silkworm serve as an effective system for sex-control in silkworms. To determine the molecular mechanism of silkworm parthenogenesis, protein profiles from newly hatched silkworm of a parthenogenetic lines with high pigmentation rate and hatching rate were compared with amphigenetic lines using proteomics approach, including by two-dimensional electrophoresis (2-DE), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS), and bioinformatics analysis. Several proteins were expressed differentially between the parthenogenetic and amphigenetic lines, and seven of nine interesting proteins were identified successfully using MALDI-TOF/TOF MS analysis. The identified proteins were muscular protein-20, odorant binding protein-LOC100301497, glutathione S-transferase delta, translationally controlled tumor protein homolog, cuticular protein RR-1 motif 19, beta-actin, actins, and muscle-type A(1) actins. These proteins may be associated with the regulation of growth, development, and reproductive processes of silkworm parthenogenetic lines.