摘要

Vascular basement membrane (BM) stabilizes brain vessels and inhibits endothelial cell cycle. Cerebral ischemia causes BM breakdown with the loss of structural BM components including collagens and laminins. In this study, the expression changes of the BM proteoglycan agrin, and the non-structural BM constituent SPARC (BM-40, osteonectin), were studied in brain vessels after global cerebral ischemia. A transient 20-min forebrain ischemia followed by 1, 6 or 24 h of reperfusion was induced in adult Sprague-Dawley rats by combined bilateral common carotid artery occlusion and hypotension (42-45 mm Hg). In a separate group of animals, a mild (32 degrees C) post-ischemic hypothermia was induced for 6 h, starting immediately after ischemia. RNA from similar to 500 brain vessels (20-100 mu m) extracted by laser-capture microdissection (LCM) microscopy was used to deter-mine the expression of proteoglycans agrin and SPARC mRNAs by quantitative PCR (Q-PCR). Protein expression was determined by immunohistochemistry in adjacent tissue sections. The BBB permeability was assessed using (3)H-sucrose as an in vivo tracer and by examining fibrinogen immunoreactivity in tissue sections. A transient global brain ischemia resulted in a significant (ANOVA, p<0.05; 6 animals/group) reduction in agrin and SPARC mRNAs in LCM-captured brain vessels 24 h after reperfusion. A time-dependent loss of agrin and SPARC from the BM during reperfusion was also observed by immunochemistry. A 6-h post-ischemic hypothermia reduced SPARC and agrin mRNA and protein losses, BBB transfer constant for 3 H-sucrose as well as fibrinogen extravasation 24 h after reperfusion. it is conluded that a transient post-ischemic hypothermia stabilizes brain vessels and reduces BBB disruption in part by preventing proteolytic degradation of regulatory BM constituents, SPARC and agrin.

  • 出版日期2009-5-7