摘要

Sheets of Al-alloys 5083 and 6061 of 6 mm in thickness were subjected to friction stir welding (FSW) with different welding parameters. The effect of welding parameters on the microstructure and mechanical property of the FSW joints were investigated. Results show that FSW joints with high quality could be produced by controlling welding parameters, and a high joint strength coefficient of 85% was obtained. Dynamic recrystallization took place in the nugget zones (NZs) with fine and equiaxed grains generated, and the grain size increased with the increasing rotation rate; usually the grain size of 5083 Al in the NZ was smaller than that of 6061Al. The heat-affected zones (HAZ) of 6061 Al side were the low hardness zones in all of the FSW joints, and the value of low hardness increased with the increasing rotation rate. It is found that the fracture paths corresponded well with the lowest hardness distribution profiles in the joints and the ultimate tensile strength increased with the increasing of the rotation rate.

全文