Adaptive Backstepping Finite Time Attitude Control of Reentry RLV with Input Constraint

作者:Wang Fang*; Zong Qun; Tian Bailing
来源:Mathematical Problems in Engineering, 2014, 2014: 801747.
DOI:10.1155/2014/801747

摘要

This paper presents the finite time attitude tracking control problem of reusable launch vehicle (RLV) in reentry phase under input constraint, model uncertainty, and external disturbance. A control-oriented model of rotational dynamics is developed and used for controller design for the complex coupling of the translational and rotational dynamics. Firstly, fast terminal sliding mode control is incorporated into backstepping control to design controller considering model uncertainty and external disturbance. The "explosion of terms" problem inherent in backstepping control is eliminated by a robust second order filter. Secondly, the control problem in the presence of input constraint is further considered, and a constrained adaptive backstepping fast terminal sliding mode control scheme is developed. At the control design level, adaptive law is employed to estimate the unknown norm bound of lumped uncertainty with the reduction of computational burden. The Lyapunov-based stability analysis of the closed-loop system is carried out. The control performance is presented via the simulation of six-degree-of-freedom (6-DOF) model of RLV.