摘要

Toward the achievement of noninvasive and continuous monitoring of blood glucose level, we developed a new measurement method based on the continuous-wave photoacoustic (CW-PA) technique and performed the first validation in vitro with calibrated aqueous glucose solutions. The PA technique has been studied in the past but exclusively based on the pulse setup since the CW one exhibits dependence on the cavity dimensions, which is not compatible with the final application requirements. This paper describes a new strategy relying on the monitoring of the resonant-frequency relative shift induced by the change of glucose concentrations rather than amplitude signal levels at a fixed frequency. From in vitro results, we demonstrate a stable and reproducible response to glucose at various cavity dimensions and optical wavelengths, with a slope of 0.19 +/- 1-0.01%/g/dL. From theoretical considerations, this method is consistent with a relative acoustic velocity measurement, which also explains the aforementioned stability. The proposed method then resolves most of the issues usually associated with the CW-PA technique and makes it a potential alternative for the noninvasive and continuous monitoring of glycemia levels. However, experimental determination of sensor responses to albumin and temperature as two potential interferents shows similar levels, which points to the selectivity to glucose as a major issue we should deal with in future development.

  • 出版日期2012-6-5