摘要

As an important administrative task in the area of education, course timetabling is a complex optimization problem that is difficult to solve by conventional methods. The paper adapts a new nature-inspired metaheuristic called ecogeography-based optimization (EBO), which enhances biogeography-based optimization by equipping the population with a neighborhood structure and designing two new migration operators named global migration and local migration, to solve the university course timetabling problem (UCTP). In particular, we develop two discrete migration operators for efficiently evolving UCTP solutions based on the principle of global and local migration in EBO, and design a repair process for effectively coping with infeasible timetables. We test the discrete EBO algorithm on a set of problem instances from four universities in China, and the experimental results show that the proposed method exhibits a promising performance advantage over a number of state-of-the-art methods.