摘要

To test whether a novel guide template we designed can facilitate accurate insertion of antegrade lag screws in the fixation of acetabular posterior column fractures. We created virtual three-dimensional reconstruction models of the pelvis from CT scan data obtained from 96 adult patients without any bony problems. A virtual cylindrical implant was placed along the longitudinal axis of the acetabular posterior column passing through the ischial tuberosity. The diameter of cylindrical implant was augmented to 6.5 mm, and the direction was adjusted until the optimal screw path was found using the reverse engineering technique. The orifice of this cylinder from the iliac fossa was determined as the entry point for the antegrade lag screw. The anatomical parameters of the screw entry path were measured and saved in .stl format. The guide template was designed according to the acetabular morphology and the measured anatomical parameters before it was put into manufacture of a solid template with the rapid prototyping technique. The feasibility and accuracy of the guide template were tested in cadaveric pelvises. Finally, the guide template was used in real surgery for five patients. Furthermore, the time required for surgery was recorded. Under the guide of this navigation template, antegrade lag screws were successfully placed in the posterior column of the acetabulum in the cadaveric test. And five lag screws were successfully placed in five patients. The mean time of antegrade lag screw insertion required 5.8 (3-10) min. Antegrade lag screws can be more accurately put into the posterior column of the acetabulum with the help of this navigation template.