摘要

Microscale electrical propagation in the heart can be modeled by a reaction-diffusion system, describing cell and tissue electrophysiology. Macroscale features of wavefront propagation can be reproduced by an eikonal model, a reduced formulation involving only wavefront shape. In this paper, these two approaches are combined to incorporate global information about reentrant pathways into a reaction-diffusion model. The eikonal-diffusion formulation is generalized to handle reentrant activation patterns and wavefront collisions. Boundary conditions are used to specify pathways of reentry. Finite-element-based numerical methods are presented to solve this nonlinear equation on a coarse triangular mesh. The macroscale eikonal model serves to construct an initial condition for the microscale reaction-diffusion model. Electrical propagation simulated from this initial condition is then compared to the isochrones predicted by the eikonal model. Results in 2-D and thin 3-D test-case geometries demonstrate the ability of this technique to initiate anatomical and functional reentries along prescribed pathways, thus facilitating the development of dedicated models aimed at better understanding clinical case reports.

  • 出版日期2010-9