Nanostructured Composites of Sodium Montmorillonite Clay and PEO Used in Dissolution Improvement of Aprepitant Drug by Melt Mixing

作者:Pappa Christina; Nanaki Stavroula; Giliopoulos Dimitrios; Triantafyllidis Konstantinos; Kostoglou Margaritis; Avgeropoulos Apostolos; Bikiaris Dimitrios*
来源:Applied Sciences-Basel, 2018, 8(5): 786.
DOI:10.3390/app8050786

摘要

In this work, aprepitant (APR) was loaded in a high-molecular-weight poly(ethylene oxide) (PEO) and PEO/clay nanocomposites via the melt-mixing process in order to investigate the combined effect of the PEO and PEO/clay phases on the dissolution profile of APR. Various drug (5, 10, 20 wt %) and Cloisite-Na+ microgranuled nanoclay (5 and 10 wt %) loadings were used for the preparation of the solid dispersions using a twin screw melt mixer at temperatures below the drug's melting point. X-ray diffraction (XRD) and infrared (FTIR) data of the prepared formulations confirmed that the semicrystalline structure of the PEO and the structure of APR have remained intact. The PEO chain intercalation in the intragallery space between the clay nanolayers was also confirmed by XRD, especially in the APR/PEO formulations containing 5 wt % microgranuled nanoclay. The in vitro release study demonstrated that in all formulations, the dissolution rate of APR was substantially enhanced compared to neat drug. Immediate release formulations have been prepared, and the combination of PEO/5 wt % clay nanocomposite phase with 5 or 10 wt % drug loading gives much higher maximum dissolution (reaching 98 and 85%, respectively) compared to the neat drug (40%). This improved performance was attributed to the highly intercalated/exfoliated state of clay nanolayers in the APR/PEO/5 wt % clay formulations. A model was also investigated to explain the physical mechanism of drug release in all formulations.

  • 出版日期2018-5