摘要

Besides the inherent chirality, DNA is enriched by nitrogen and oxygen functional groups that are preferential to coordinate with transition metal ions, and its self-assembled structures, including the G-quadruplex, the i-motif, and the conventional Watson-Crick duplex, etc., can be adjusted via different base pairings. Recently biotemplating on the basis of DNA self-assembly has been considered as an attractive method to construct switchable nanomaterials, to direct crystal growth and to design enantioselective selectors/catalysts. This review briefly covers the recent progress relevant to DNA modulated nano/subnano materials. The long-term goal of this area of research is to explore novel promisingly environmental-benign approaches to construct switchable nanomachines, nano/subnano clusters and enantioselective recognition platforms respectively, through DNA-based modulation.