DISTINCTIVE HIPPOCAMPAL CA2 SUBFIELD OF THE AMAZON RODENT PROECHIMYS

作者:Scorza C A*; Araujo B H S; Arida R M; Scorza F A; Torres L B; Amorim H A; Cavalheiro E A
来源:Neuroscience, 2010, 169(3): 965-973.
DOI:10.1016/j.neuroscience.2010.05.079

摘要

Previous data of our laboratory have shown that the Amazonian rodents Proechimys do not present spontaneous seizures in different models of epilepsy, suggesting endogenous inhibitory mechanisms. Here, we describe a remarkably different Proechimy's cytoarchitecture organization of the hippocampal cornu Ammonis 2 (CA2) subfield. We identified a very distinctive Proechimy's CA2 sector exhibiting disorganized cell presentation of the pyramidal layer and atypical dispersion of the pyramidal-like cells to the stratum oriens, strongly contrasting to the densely packed CA2 cells in the Wistar rats. Studies showed that CA2 is the only cornu ammonis (CA) subfield resistant to the extensive pyramidal neural loss in mesial temporal lobe epilepsy (MTLE) associated to hippocampal sclerosis. Thus, in order to investigate this region, we used Nissl and Timm staining, stereological approach to count neurons and immunohistochemistry to neuronal nuclei (NeuN), parvalbumin (PV), calbindin (CB) and calretinin (CR). We did not notice statistically significant differences in the total number of neurons of the CA2 region between Proechimys and Wistar. However, Proechimys rodents presented higher CA2 volume than Wistar rats. Furthermore, no significant difference in the optical density of parvalbumin-immunoreactivity was found between subject groups. On the other hand, Proechimys presented significant higher density of calbindin and calretinin-immunoreactivity when compared to Wistar rats. In this context, this unique CA2 subfield seen in Proechimys opens up a new set of possibilities to explore the contribution of CA2 neurons in normal and pathological brain circuits.

  • 出版日期2010-9-1