摘要

In numerical analysis the failure of engineering materials is controlled through specifying yield envelopes (or surfaces) that bound the allowable stress in the material. However, each surface is distinct and requires a specific equation describing the shape of the surface to be formulated in each case. These equations impact on the numerical implementation, specifically relating to stress integration, of the models and therefore a separate algorithm must be constructed for each model. This paper presents, for the first time, a way to construct yield surfaces using techniques from non-uniform rational basis spline (NURBS) surfaces, such that any isotropic convex yield envelope can be represented within the same framework. These surfaces are combined with an implicit backward-Euler-type stress integration algorithm to provide a flexible numerical framework for computational plasticity. The algorithm is inherently stable as the iterative process starts and remains on the yield surface throughout the stress integration. The performance of the algorithm is explored using both material point investigations and boundary value analyses demonstrating that the framework can be applied to a variety of plasticity models.

  • 出版日期2016-6-1
  • 单位AECOM