摘要

Heats of formation for nine complexes of the form CuX(n) (X = Cu, H, O, OH, S, F, F(2), Cl, Cl(2)) were calculated using the CCSD and CCSD( T) coupled cluster methods with the 6-31G** and TZVP basis sets as well as the LANL2DZ basis set/pseudopotential on Cu with both the 6-31G** and TZVP basis sets applied to the nonmetal atoms. These values were compared with literature heat of formation values. A second-order Douglas-Kroll-Hess relativistic correction was applied at the CCSD/TZVP and CCSD(T)/TZVP levels of theory. Overall, the CCSD(T)/TZVP level of theory with the relativistic correction was most suited for the heat of formation calculations possessing low absolute average error and RMSD and the ability to analyze each copper complex, except for the problematic case of copper(II) fluoride. Finally, experimental geometric parameters were compared with the calculated structures in such cases where these data were available. None of the investigated levels of theory predicted bond lengths consistently better than other methods, and it was determined that the most accurate bond length does not necessarily result in the most accurate calculated heat of formation value for a given complex.

  • 出版日期2009