摘要

A sensitive and selective electrochemical Pb2+ sensor consisting of a gold-carbon foam/chitosan/gold (Au-CFs/Chit/Au)-modified electrode was prepared. The electrode was synthesized via an oil-in-water emulsion polymerization and carbonization approach. Phenolic resins were used as a carbon source. HAuCl4 was used as a gold source and as an acidic catalyst. Melamine was used as a coordination and coupling agent to control the size of the Au nanoparticles (AuNPs). The morphologies and microstructures of the Au-CFs were characterized using scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. The results revealed that the carbon foams contained interconnected macropores with diameters of nearly 5.0 mu m and AuNPs with mean diameters of approximately 20.0, 9.0, and 7.0 nm. Brunauer-Emmett-Teller analysis revealed that the biggest surface area is 653.82 m(2)/g for Au/CFs-7. The electrochemical properties of modified electrodes and their responses to Pb2+ were characterized using cyclic voltammetry and differential pulse anodic stripping voltammetry. The influence of the test conditions were studied to optimize operational parameters such as the choice of supporting electrolyte, pH, deposition potential, and deposition time. Under optimal conditions, typical Au/CFs-7-modified gold electrodes exhibited an excellent electrochemical response for Pb2+ with a wide linear response range from 0.01 to 1.2 mu M, a correlation coefficient of 0.995, and a lower limit of detection of 0.63 nM with deposition time of 180 s (S/N = 3).