摘要

The factors and mechanisms responsible for the reciprocal changes in lipogenesis in rat mammary gland and adipose tissue during the lactation cycle have been investigated. Lactation decreased the activation status and mRNA concentration of acetyl-CoA carboxylase in adipose tissue. Litter removal decreased the mRNA concentration of acetyl-CoA carboxylase in the mammary gland and increased the enzyme's mRNA concentration and activation status in adipose tissue. Lowering serum prolactin concentration in lactating rats decreased the amount of mammary acetyl-CoA carboxylase mRNA and increased that of adipose tissue, and increased the activation status of the enzyme in adipose tissue. Decreasing serum growth hormone (GH) alone had little effect on acetyl-CoA carboxylase in lactating rats, although it did lower pup growth rate and serum concentration of insulin-like growth factor-I. Lowering serum GH concentration exacerbated the effects of decreasing serum prolactin on mammary-gland (but not adipose-tissue) acetyl-CoA carboxylase mRNA and further increased the rise in activation status of the adipose-tissue enzyme induced by decreasing serum prolactin. Changes in acetyl-CoA carboxylase mRNA in both mammary and adipose tissue were paralleled by changes in total enzyme activity except after litter removal, when there was a disproportionately large decrease in total enzyme activity of the mammary gland. Thus prolactin has a major and GH a minor role in the regulation of acetyl-CoA carboxylase activity during lactation. Changes in mammary activity in response to prolactin and GH are primarily due to alterations in gene transcription, whereas adaptation in adipose tissue involves both changes in gene transcription and activation status.

  • 出版日期1992-7-15