摘要

Vanilla (standard European) options are actively traded on many underlying asset classes, such as equities, commodities and foreign exchange (FX). The market quotes for these options are typically used by exotic options traders to calibrate the parameters of the (risk-neutral) stochastic process for the underlying asset. Barrier options, of many different types, are also widely traded in all these markets but one important feature of the FX options markets is that barrier options, especially double-no-touch (DNT) options, are now so actively traded that they are no longer considered, in any way, exotic options. Instead, traders would, in principle, like to use them as instruments to which they can calibrate their model. The desirability of doing this has been highlighted by talks at practitioner conferences but, to our best knowledge (at least within the realm of the published literature), there have been no models which are specifically designed to cater for this. In this paper, we introduce such a model. It allows for calibration in a two-stage process. The first stage fits to DNT options (or other types of double barrier options). The second stage fits to vanilla options. The key to this is to assume that the dynamics of the spot FX rate are of one type before the first exit time from a 'corridor' region but are allowed to be of a different type after the first exit time. The model allows for jumps (either finite activity or infinite activity) and also for stochastic volatility. Hence, not only can it give a good fit to the market prices of options, it can also allow for realistic dynamics of the underlying FX rate and realistic future volatility smiles and skews. En route, we significantly extend existing results in the literature by providing closed-form (up to Laplace inversion) expressions for the prices of several types of barrier options as well as results related to the distribution of first passage times and of the 'overshoot'.

  • 出版日期2010