摘要

Although enhancing resilience is a well-recognized adaptation to climate change, little research has been undertaken on the dynamics of resilience. This occurs because complex relationships exist between adaptive capacity and resilience, and some issues also create challenges related to the construction, operation, and application of resilience. This study identified the dynamics of temporal, spatial changes of resilience found in a sample of wheat-drought resilience in Australia's wheatsheep production zone during 1991-2010. I estimated resilience using principal component analysis, mapped resilience and its components, distinguished resilient and sensitive regions, and provided recommendations related to improving resilience. I frame that resilience is composed of social resilience including on- and off-site adaptive capacity as well as biophysical resilience including resistance and absorption. I found that resilience and its components have different temporal trends, spatial shifts and growth ratios in each region during different years, which results from complicated interactions, such as complementation and substitution among its components. In wheat-sheep zones, I recommend that identifying regional bottlenecks, science-policy engagement, and managing resilience components are the priorities for improving resilience.