摘要

An implicit material point method (MPM), a variant of the finite element method (FEM), is presented in this paper. The key feature of MPM is that the spatial discretisation uses a set of material points, which are allowed to move freely through the background mesh. All history-dependent variables are tracked on the material points and these material points are used as integration points similar to the Gaussian points. A mapping and re-mapping algorithm is employed, to allow the state variables and other information to be mapped back and forth between the material points and background mesh nodes during an analysis. In contrast to an explicit time integration scheme utilised by most researchers, an implicit time integration scheme has been utilised here. The advantages of such an approach are twofold: firstly, it addresses the limitation of the time step size inherent in explicit integration schemes, thereby potentially saving significant computational costs for certain types of problems; secondly, it enables an improved algorithm accuracy, which is important for some constitutive behaviours, such as elastoplasticity. The main purpose of this paper is to provide a unified MPM framework, in which both quasi-static and dynamic analyses can be solved, and to demonstrate the model behaviour. The implementation closely follows standard FEM approaches, where possible, to allow easy conversion of other FEM codes. Newton's method is used to solve the equation of motion for both cases, while the formation of the mass matrix and the required updating of the kinematic variables are unique to the dynamic analysis. Comparisons with an Updated Lagrangian FEM and an explicit MPM code are made with respect to the algorithmic accuracy and time step size in a couple of representative examples, which helps to illustrate the relative performance and advantages of the implicit MPM. A geotechnical application is then considered, illustrating the capabilities of the proposed method when applied in the geotechnical field.