摘要

We present the multi-band photometric and spectroscopic study of an over-contact binary system, EPIC 211957146. The light curves exhibit a variable O' Connell effect, confirmed from our observational data and the Kepler K2 data. The best photometric solution incorporating a dark spot over the primary component unveils that the system has a low-mass ratio (q similar to 0.17) and a high inclination (i similar to 85 degrees). To confirm the solution and constrain the uncertainty, Monte-Carlo simulations are performed and the results are reported. Based on the O-C diagram analysis, we see that the variable shows a period increase at the rate of dP/dt similar to 1.06. x. 10(-6) days yr(-1), which is higher than the theoretically predicted value. Presence of a third body having a period of similar to 16.23 years is evident from the O-C diagram. No filled-in effect is observed in the Ha line, while the effect is vividly present in the Na line. From the Kepler K2 data, we found that the primary and secondary minima exhibit an anti-correlated O-C variation followed by an erratic behavior. This is possibly caused by the longitudinal motion of the spot, and hence, we set a lower limit of similar to 40 days for the spot modulation. We also observe a possibly associated photometric difference in the primary depth by comparing our light curves with Kepler K2 normalized light curves. This system has a low-mass ratio and a high fill-out factor, and, theoretically, such a physical configuration would lead to a merger.

  • 出版日期2017-5