An efficient and effective blind camera image quality metric via modeling quaternion wavelet coefficients

作者:Tang, Lijuan; Li, Leida; Sun, Kezheng; Xia, Zhifang; Gu, Ke; Qian, Jiansheng*
来源:Journal of Visual Communication and Image Representation, 2017, 49: 204-212.
DOI:10.1016/j.jvcir.2017.09.010

摘要

As an extension of Discrete and Complex Wavelet Transform, Quaternion Wavelet Transform (QWT) has attracted extensive attention in the past few years, because it can provide better analytic representation for 2D images. The QWT of an image consists of four parts, i.e., one magnitude part and three phase parts. The magnitude is nearly shift-invariant, which characterizes features at any spatial location, and the three phases represent the structure of these features. This indicates that QWT is more powerful in representing image structures, and thus is suitable for image quality evaluation. In this paper, an efficient and effective Camera Image Quality Metric (CIQM) is proposed based on QWT, which is utilized to describe the intrinsic structures of an image. For an image, it is first decomposed by QWT with three scales. Then, for each scale, the magnitude and entropy of the subband coefficients, and natural scene statistics of the third phase are calculated. The magnitude is utilized to describe the generalized spectral behavior, and the entropy is used to encode die generalized information of distortions. Since the third phase of QWT is considered to be texture feature, the natural scene statistics of the third phase of QWT is used to measure structure degradations in the proposed method. All these features reflect the self-similarity and independency of image content, which can effectively reflect image distortions. Finally, random forest is utilized to build the quality model. Experiments conducted on three camera image databases and two multiply distorted image databases have proved that CIQM outperforms the relevant state-of-the-art models for both authentically distorted images and multiply distorted images.