摘要

<jats:title>Abstract</jats:title><jats:p>Due to special features, modules comprising asymmetric hollow fiber membranes are widely used in various industrial gas separation processes. Accordingly, numerous mathematical models have been proposed for predicting and analyzing the performance. However, majority of the proposed models for this purpose assume that membrane permeance remains constant upon changes in temperature and pressure. In this study, a mathematical model is proposed by taking into account non-ideal effects including changes in pressure and temperature in both sides of hollow fibers, concentration polarization and Joule-Thomson effects. Finite element method is employed to solve the governing equations and model is validated using experimental data. The effect of temperature and pressure dependency of permeance and separation performance of hollow fiber membrane modules is investigated in the case of CO</jats:p>

  • 出版日期2016-3