Directional learning, but no spatial mapping by rats performing a navigational task in an inverted orientation

作者:Valerio Stephane; Clark Benjamin J; Chan Jeremy H M; Frost Carlton P; Harris Mark J; Taube Jeffrey S*
来源:Neurobiology of Learning and Memory, 2010, 93(4): 495-505.
DOI:10.1016/j.nlm.2010.01.007

摘要

Previous studies have identified neurons throughout the rat limbic system that fire as a function of the animal's head direction (HD). This HD signal is particularly robust when rats locomote in the horizontal and vertical planes, but is severely attenuated when locomoting upside-down (Calton & Taube, 2005). Given the hypothesis that the HD signal represents an animal's sense of directional heading, we evaluated whether rats could accurately navigate in an inverted (upside-down) orientation. The task required the animals to find an escape hole while locomoting inverted on a circular platform suspended from the ceiling. In Experiment 1, Long-Evans rats were trained to navigate to the escape hole by locomoting from either one or four start points. Interestingly, no animals from the 4-start point group reached criterion, even after 29 days of training. Animals in the 1-start point group reached criterion after about six training sessions. In Experiment 2, probe tests revealed that animals navigating from either 1- or 2-start points utilized distal visual landmarks for accurate orientation. However, subsequent probe tests revealed that their performance was markedly attenuated when navigating to the escape hole from a novel start point. This absence of flexibility while navigating upside-down was confirmed in Experiment 3 where we show that the rats do not learn to reach a place, but instead learn separate trajectories to the target hole(s). Based on these results we argue that inverted navigation primarily involves a simple directional strategy based on visual landmarks.

  • 出版日期2010-5