摘要

Antiangiogenesis is a promising antitumor strategy that inhibits tumor vascular formation to suppress tumor growth. Specifically, targeting VEGF has shown therapeutic benefits in many cancer types, leading to its approval as the first antiangiogenic drug by the Food and Drug Administration in the United States. It is known, however, that patients will experience unfavorable side effects as the VEGF and/or VEGF receptor signaling pathway is also required for homeostasis in normal tissues. Moreover, due to the cytostatic nature of antiangiogenic, cancer cells that are not killed by these drugs later develop an even more malignant phenotype, resulting in tumor invasion and metastasis. Although there have been many attempts to reduce drug resistance and increase therapeutic efficacy by combining antiangiogenic drugs with chemotherapy, the cumulative toxicity of antiangiogenic combinations limits their feasibility as treatments, as chronic angiogenesis inhibition typically reduces the antitumor effect of the co-administered chemotherapeutics. To overcome these problems, it is critical to explore new strategies that limit tumor resistance and side effects and also increase the exposure of chemotherapy drugs at the tumor site. Here, we review current understanding of antiangiogenic drugs and introduce a new combination strategy that links direct antiangiogenic protein and enzyme prodrug system with dual-targeting antiangiogenic and antiproliferative therapeutic effect in tumor microenvironment. This strategy has the potential to overcome these clinical hindrances and may serve as a paradigm for the next generation of antiangiogenic drugs.